Data Morph: A Cautionary Tale of Summary Statistics
Description
Statistics do not come intuitively to humans; they always try to find simple ways to describe complex things. Given a complex dataset, they may feel tempted to use simple summary statistics like the mean, median, or standard deviation to describe it. However, these numbers are not a replacement for visualizing the distribution. To illustrate this fact, researchers have generated many datasets that are very different visually, but share the same summary statistics. In this talk, I will discuss [Data Morph](https://github.com/stefmolin/data-morph), an open source package that builds on previous research using simulated annealing to perturb an arbitrary input dataset into a variety of shapes, while preserving the mean, standard deviation, and correlation to multiple decimal points. I will showcase how it works, discuss the challenges faced during development, and explore the limitations of this approach.